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Simulation of craze failure in a glassy polymer:
rate dependent drawing and rate dependent
failure models
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The failure of a craze ahead of a crack growing under steady state conditions in a glassy
polymer is investigated by modeling the craze microstructure using a highly anisotropic
network of springs. A rate dependent drawing law is used to determine the shape of the
craze-bulk interface. Approximate analytical results are developed to link the normal stress
on the craze-bulk interface, the thickness of the craze and the far field stress intensity factor
to the crack propagating velocity, through the craze failure criterion and the craze
microstructural parameters. The accuracy of the analytical results is examined using a
detailed numerical simulation. Our analysis shows that the rate independent craze failure
criterion, which assumes the failure stress for fibrils ahead of the crack tip to be a material
constant independent of the crack growth rate, leads to predictions of the dependence of
the craze thickness and the fracture toughness on crack growth rate that are contrary to
what is found experimentally. Rate dependent craze failure criteria are then proposed.
Specifically, we study a case where the crack tip fibril breaks down by rate dependent chain
scission and a case where the crack tip fibril fails by rate dependent chain disentanglement.
For the rate dependent chain scission criterion, the results given by the rate independent
constant failure stress criterion are retrieved in the limit of low crack propagation velocity.
Also, there exists a critical stress intensity factor below which steady state crack
propagation is impossible, i.e., crack growth becomes unstable. © 7999 Kluwer Academic
Publishers

1. Introduction the craze will fail when the crack tip opening displace-
The fracture of glassy polymers is linked to the stressiment reaches a critical valug, Within the framework
induced growth and breakdown of crazes, which areof the Dugdale model, the critical crack tip opening
planar crack-like defects. But unlike cracks, the twodisplacemend. cannot be determined and is treated as
surfaces of crazes are bridged by many fine fibrils whicta fitting parameter.

give crazes some load bearing capacity. Itis wellknown Consistent with the Dugdale model, the fibrils in-
that the craze grows in length by the Taylor meniscusside the craze were historically modeled as parallel
instability [1, 2] and grows in width by surface draw- cylinders perpendicular to the craze surface. This as-
ing [1], in which the polymer chains are drawn from sumption of parallel fibrils and the constant drawing
strain-softened bulk into the fibrils. The volume fraction stress (Dugdale model) implies that there is no lateral
of the crazed material is approximately uniform alongload transfer between individual fibrils so that the force
the craze [1]. Experiments indicate that the drawingon every fibril is identical, i.e., there is no stress con-
stressyy along the craze-bulk interface is also approxi-centration inside the craze so that the craze can draw
mately uniform, except near the crack tip and the crazéndefinitely. This means that the critical crack tip open-
tip [1]. This approximate uniform traction along the ing displacemené. = co. This apparent paradox was
craze-bulk interface motivates the use of the Dugdaleesolved by Brown [5], who proposed a mechanism
model [3] to calculate the craze opening displacemenof craze failure based on the observation from trans-
which is used as the failure criterion for the craze, i.e.mission electron micrographs (TEM) of crazes which
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reveal the existence of short fibrils running between thalirection of the main fibrilsh. is the half thickness of
main tensile fibrils [4]. Brown [5] pointed out that the the strip and is related to the critical crack tip opening
existence of these “cross-tie” fibrils has a profound ef-displacemené. by:

fect on the failure mechanism of the craze. The cross-tie

fibrils can transfer load between main fibrils thus allow- 8¢ = 2he(1— vy) 1)
ing the force in the first fibril ahead of the crack tip to
reach the breaking force. whereu is the volume fraction of the fibrillated material

One of the difficulties in modeling the process of and is found to be a material constant [1].
craze breakdown is the specification of the boundary The strip model predicts that the tensile stress ahead
conditions along the craze-bulk interface, since the loof the crack tip has the classical inverse square root sin-
cation and shape of the craze-bulk interface are detegularity that scales with/hcao, whereag = Cgg/C22
mined by the drawing law of the craze fibrils, massand Cgg is the in-plane shear modulus of the crazed
conservation of the craze material, the elastic respons@aterial. The craze is assumed to fail when the aver-
of the bulk material outside the craze and the continuityage tensile stress in the first fibril ahead of the crack tip
of traction and displacement across the craze-bulk inreaches the critical value of whereo; is assumed to be
terface. The difficulty of this fully coupled problem is a material constant and independent of the crack growth
avoided by Brown [5] who modeled the crack tip crazerate. Using this failure criterion, and the crack tip sin-
material as an infinite strip of highly anisotropic elastic gular field, Brown showed that the critical crack tip
continuum with elastic modulCjj. Fig. 1 shows the opening displacemeit is
relative scale of the problem. The length of the craze
L is much smaller than the crack lengihwhich in 7Dy o1\ 2
turn is much smaller thaw, the width of the speci- Se=—(@A—- Uf)<—> 2
men. The thickness of the craze at the crack Lipig %o od

much smaller thah but is substantially larger than the where Dy is on the order of a fibril spacing. The key

fibril spacing. Thus the geometry in Fig. 1b is APPIOXi4ea of Brown'’s strip model is to show that the failure

imated by an infinite strip with thickness (Fig. 1c). ) . )
Due to symmetry, only half the craze needs to be con—Of craze, e.g.dc cannot be predicted using a line zone

sidered. The effect of crack tip loading is simulated bym;hrﬁiecr%;?rlﬁié?jzls (?Stgilléhgf ?#g%?;i?gg%ell?is?g ’
applying a uniform displacement on the strip bound-

ary, which is determined by the condition that the streséhICkness have to be included in th? analysis.
I o : Several improvements on Brown’s model have been
far away from the crack tip is uniaxial and is equal to

the drawing stressq. Specifically, a uniform displace- suggested. (1) Huat al. [6] extended Brown's model

mentA = (o4/C22)hc is applied on the craze boundary, ;Jiﬁg}l?magtlrsgstg)f%fd?rl]a;sigglg(at%riiteerg;n;mge[;l]ﬂrle(_:on-
whereC,, is the tensile modulus of the craze in the ' )

placed the anisotropic continuum with a spring network
model to investigate the effects of craze microstructure.
(3) Sheet al.[8] replaced Brown'’s assumption of a uni-
@ form displaced strip with a more realistic stress distri-
AAAAAA A4 ® bution on the craze boundary derived from an assumed
rate independent drawing law.

The aforementioned calculations [5—-8] neglect the
fact that crack growth in polymer glasses due to
craze breakdown is a rate dependent process which
was demonstrated experimentally bplD9] and Dai
et al.[10]. Previous analysis by Kramer and Hart [11]
and Knauset al.[12] included rate dependence in their

Bulk Polymer

w crack growth model but still treated the craze (or the
PR fracture process zone in Knauss’s model) as a line zone

© of zero thickness. The two dimensional nature of load

transfer between the fibrils inside the craze, which is

_ O
T At h°T T T shown to be critical in the understanding of the craze
failure process, is not considered.

In this paper, the shape of a craze ahead of a steadily

Anisotropic Elastic Continuum

2h growing crack is predicted using a rate dependent draw-
ing law, i.e.,
A=Zs _ N
l l l l e l l l h= a<@> (3)
00

Figure 1 Figure 1 shows the relative scale of the problem. The length

of the crazel is much smaller than the crack lengthwhich in turn is whereo;, is the normal stress on the craze bulk interface

much smaller thamw. The thickness of the craze at the crack tip & at a fixed material point. Here is a material constant
much smaller tharh. but is substantially larger than the fibril spacing. IX 1al point. 1S ! S

Thus the geometry in Fig. 1b is approximated by an infinite strip with With di_menSions of velocityyo is a materia:' paramgter
thicknesshe (Fig. 1c). which is often taken as the nominal drawing stress,
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a material parameter and is typically on the order of 10Fig. 2) which moves along the positixedirection with
or larger [13]. The craze is no longer assumed to hava constant velocitg, thus:

zero thickness or to be a strip with uniform thickness as

in previous studies [5—10]. It has finite thickness and the x=X-—at 4)
craze thickness profildy(x), is calculated through the ] ) ,
mass conservation of the crazed material and the stre¥41ere the Cartesian coordinate systetnY) are fixed
and displacement continuity across the craze-bulidtone material point. The craze hasitstimatL. The

interface. far field loading is Mode | and is given by [16]:
The aim of this paper is to study the dependence of K

the crack growth rate on the applied stress intensity fac- oij (r = 00,0) = —Aaij ©®)

tor, the drawing law, the craze microstructural param- N 2mr

eters and the possible failure criteria of the craze. AnWhereaij (6) are universal functions describing the an-

alytical approximate solutions are developed to study ular variation of the in-plane stress components [16].

the failure of the craze. The effect of rate (_:Iependenc ote that the craze is no longer assumed to have zero
of the problem comes in through the drawing law, the

. thickness as in [11] and [12]. The unknown shape of
crack growth rate and the fact that the failure Procesg o ~ro-e-bulk in[ten!ace is[ de]note dyoy= h(x) and wiﬁ
may be rate dependent. As in previous work [5-8], w

first consider the rate independent failure criterion an € obtained by solving a fully coupled interior-exterior

we demonstrate that the rate independent craze faif—’roblem as we will show next.
ure criterion leads to predictions which are contrary to
the experimental obser_vatlons. This motivates us to N3 5 Elastic field outside the craze
clude the rate effects in the craze failure model. Wi i

. .. _The craze is assumed to have an unknown shalpxdf
then propose two rate dependent craze failure crite-

Lo ; . with unknown traction—on(X) acting on its surface.
rion, i.e., (1) rate de.pendent chain scission and (2) ratq.he tractionon(x) and the craze shapex) are deter-
dependent chain dlsentanglemgnt. Analyses are coMined by the continuity of traction and displacement
ducted for the rate dependent failure criterion and good . .
agreement is found between the simulation and the ex"’—Ilong the craze-bulk interface, the drawing law and the

griments mass conservation condition. From the continuity of
P ' displacement across the craze-bulk interface and mass
conservation, the displacement of the crack face as seen

) by the outer elastic field;c(x) can be shown as [1, 8]:
2. Problem formulation

2.1. Geometry ve(X) = h(xX)(1 — vf) (5)
The geometry is shown in Fig. 2. As in all previous

calculations, we assumed small scale yielding (SSYWwhere the small elastic stretch of the craze material is
condition [14-16], since the length of the craze is smallneglected and; is the volume fraction of the fibrillated
compared to the length of the crack and the specimematerial. The factor (3 vf) results from mass conser-
dimensions so that the far field applied elastic stresgation, i.e., the original height of the uncrazed material
intensity factorKa controls the growth of the craze. mustbe subtracted froh{x) to obtain the displacement
Steady state crack propagation is assumed. A movingf the glassy material above the interface. A detailed
coordinate systenx(y) is attached to the crack tip (see discussion of Equation 5 can be found elsewhere [1, 8].

—ba

/ y=h(x)

crack tip

Figure 2 Small scale yielding condition: the craze of lengttis assumed to be small compared with the crack leagsb that the crack can be
modeled as semi-infinite. The loading is simulated byKhefield applied abo. (X, Y) is a Cartesian. coordinate fixed at a material point ang)
is the moving system with its origin fixed at the crack tip.
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The glass outside the craze is modeled as a linez
elastic, isotropic continuum with Young’'s modul&s
and Poisson’s ratio. For a given far field loadinga,
vc(X) can be expressed in termsi¥f and the normal
traction—on(X) on the crack faces [17], i.e.,

(a)

JL=x++J/L—=s
JL—=x—+L-s

—/_L on(s)log

0]

.

(62)

The location of the craze tips= L, is determined by
enforcing the condition of bounded stresses at the craz
tip, which gives [17]

(c)

_ L \/éffn(s)
S /ALY

&K 1 ! § X
Note that bothr,(x) andvc(X) (i.e.,h(x)) are unknown
and their values depend on the crack growth rate an ke
the drawing law. 9 le
d

Ka ds (6b)

/

B

—_———— l<—>|
2.3. Drawing law 1
As mentioned earlier, the craze shapg) is deter- ' ' '
mined by the drawing law which specifies how fibrils Figure 3 (a) Model of craze microstructure. (b) 2D spring network
are drawn from the craze-bulk interface. In this work model used to simulate the craze microstructure. (c) Basic unit of the

. . . R 2D spring network. The definition df I, km, ke andd are given in
we consider a power law drawing law (Equation 3), i.e., appendix A.

w0

0o

h(X,t) = “( gain insight, we propose an approximate analytic solu-
tion based on the following simplifying assumptions:

Under the steady state condition (Equatioh@X, t) =

h(x), the material derivativie(X, t) is (1) The normal traction on the unknown craze-bulk
interface forx > 0 is spatially uniform and is denoted
on(¥)\" a dh(x) by o4. One consequence of this assumption is that the
( o0 ) T o dx (6¢) energy release ratg is given by
wherea/« is a dimensionless velocity. G = 2hcoq(1 — vr) (7a)

where 2 is the craze thickness at the crack tip. A
2.4. Elastic field inside craze detailed discussion of Equation 7a can be found in
The material inside the craze zone, iyes h(x)ismod- ~ Ref. [6]. Recall thalG is related to the applied stress
eled by the spring network shown in Fig. 3. The springintensity factork 4 by
network is obtained by periodic extension of the basic
unit shown in Fig. 2c. The effective continuum mod- G=(01- vz)K,ﬁ/E (7b)
uli G;; of the resulting spring network are calculated
in Ref. [7] and are given in Appendix A. This spring  (2) The stresses inside the craze is obtained by mod-
network model simulates the discreteness of the crazeling the craze as a strip with uniform thickndss
microstructure and takes into account of the cross-tidJnlike the rate independent casg,is a function ofa.
fibrils. The number of spring elements in general de-The spring network model is replaced by an equivalent
pends on the unknown craze thickneés). The forces  anisotropic continuum with moduluS;; as described
in each element can be computed om¢g) and the in Appendix A.
traction on the craze-bulk interface is determined.

The validity and accuracy of the analytical ap-

proximate solution is justified by a detailed numeri-
2.5. Analytical approximations cal simulation which is given in Appendix B. In the
The problem stated in Sections 2.2—-2.4 is fully couplechumerical simulation, the craze material is modeled us-
so that no closed form analytic solution is possible. Toing the spring network model described in Section 2.4.

3698



Following our assumptions, the stress distribution 150

along the unknown craze-bulk interfagg(x) is
on(X) =0y forx >0
(8) 100
on(X) =0 forx <O >
o
Using Equations 6 and 6c, the drawing stress, =
and the applied far field stress intensity factdg, are - .
found to be © 5ol —
. 1/n ® cxperimental data for PMMA
ahe analytical approximation(eq 11) for PMMA
odl —+—] oo (9a)
oL
| | | |
22 0
Ka = \—\/Cadx/f (9b) 10 10° 10* 10 100 10
d a (m/s)

where 2 is the craze thickness at the crack tip£ 0).  Figure 4 The drawing stress dependence on the crack growth rate for
Note thath; andL in Equations 9a and 9b are functions PMMA. The filled circles are from the experimental measurements of
ofa Integrating Equation 6aand using Equations 5 ampbll [9] and the solid line is the fit of analytical expression (Equation 11)

) . - toth i ts.
9b, the craze thickness profile is found to be 0 the expenments

nx) o 2.6. Approximate stress field inside
1-v9)Kz —— 1+V/1-% the craze
4E(1 — v)og (2 1-X+X |09< 1-J1= )‘(> ) The results in the last section allow us to determine the
rate dependent tractiary on the craze-bulk interface
(10a)  and the thickness of the craze at the crack tip in terms
of Ka anda. For a given crack growth rate the ap-
whereX = x/L is the normalized distance. The thick- plied far field stress intensity factdt, is determined
ness of the craze at the crack tip, i.e.,x=01in Equa- if a failure criterion is specified. To enforce the failure

tion 10a, is criterion, we need to obtain the stresses on the fibrils
directly ahead of the crack tip. Following our assump-

(1— v2)K,_2\ 4(1— v¥)ogl tion 2, these stresses are obtained using the uniform
he = = (10b)  strip model of Brown [5] where the thickness of the

2E(1—wviog  7E(1—wr) strip is given by Equation 10b. When the traction on

o ] ] ) the craze-bulk interface has the form given by Equa-
Combining Equations 10b with 9a, the drawing stresg;jon 8, the normal stress ahead of the crack tip inside

along the craze-bulk interfacey, is found to be the craze zonep(x, y = 0) is found to be well approx-
imated by [7]
4(1-1?) a )1/(”‘1)
od=| g7 300 oo (11) =0)= d
(nE(l —v)a o2(x, y=0) T (12a)
hCO{o

Doll [9] has conducted detailed experimental studies
on the craze ahead of a steady state propagating cra
inside a homogeneous polymer PMMA. His experi-
mental measurements of the drawing stress versus the

steady state crack growth rate is plotted in Fig. 4 [9]. ca=o02(x=D,y=0)=
The solid line in Fig. 4 is obtained using our solution for 1—exp(— =0 )
the drawing stressy to fit Doll’s data. The fitting pa-

_ 4 _ _
rameters arer = 10 m/_s, o0 = 100 MPa anch = 30. The characteristic distan&&is an unknown parameter
The experimental data is fitted up to crack growth ratPwhich is used to match the discrete model, i.e., stress

less than 1 m/s. The reason is that at higher Veloc't'e%t the first crack tip fibril, to the continuum solution

adiabatic heating at the craze-bulk interface will caus ; ; :
the drawing stress to level off (as shown in Fig. 4). This?ﬁggztrlifgp;i?r)]gand 's found to 2 [7], whered is

phenomenon cannot be predicted using our simple rate
dependent drawing law (Equation 3). In previous stud-

ies [5-8],04 is assumed to be a material constant inde-

pendent of the crack growth rate. Note that the expres3. A rate independent fracture criterion

sion foroy (Equation 11) is independent of the failure Following Brown [5] we first assume that crack growth
criterion. occurs when the average stress on the fibrilimmediately

ereozgz Cs6/C22. In particular, the average stress
in the first fibril directly ahead of the crack tig, is

(12b)
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ahead of the crack tips,, reaches the breaking stress, The relationship of the stress intensity fadkgr and
ot, [6-8] the energy release ra to & can be computed using
Equation 7a and 7b

Oa = Of = Xeff fb (138-) K2 B —7'[(1 _ Uf)AoE (16b)
" ot —v?)in[1- (22)]
wherefy is the force required to break a backbone bond Zei o
of polymer and¢ is the number of entangled strands
per nominal unit craze area which is given by [7, 18]: WhereAq = 8I"/fo
—7(1—vr)Ag
Me G= : (16¢)
Zeff = qE(l an) (13b) Ololn[l— (%)2]

whereX is the areal density of entangled strands whichFig- 5a shows the dependence of the craze thickness
cross a plane in the undeformed polymer glapss  at the crack tiphc, on normalized velocity/a using
the ratio of the entangled strand density before crazingFguations 16a and 11. We expect that at high crack
to that after crazingMe is the entanglement molecular Propagating speed, the craze is thin, since at high speed
We|ght and\/|n is the number average molecular We|ghtthe craze has !eSS.time to thicken. When the crack pl’Op-
of polymer before crazing. Note that this failure crite- 29ates slowlyd/« is small), the craze has enough time
rion corresponds to a rate independent chain scissiof® form fully and the craze is thick. This is indeed what
mechanism. Fig. 5a shows. However, we notice that this reshit (
When the average stress in the first fibril ahead of thélecreases whey« increases) is inconsistent with ex-
crack tip, or more precisely when the tensile stress aPerimental observations [9, 10] which show the oppo-
x =d/2, which is given by Equation 12b, reaches thesite trend kic increases whea increases).

failure stress, the craze is assumed to fail, i.e., _ Fig. 5b shows a plot o6 versusa/« using Equa-
tion 16c. It shows thaG decreases monotonically as

o4 a/a increases. This result is also inconsistent with

1—exp(- 2@0)

= ot = Zeff o (14)

-4
with o4 given by Equation 11 and is a function of the 30x10
crack growth rate. 25

Paredes andFischer[19, 20] have found that the prod-
uctogyd is a constant, wheis the fibril spacing. Since 20

oqis dependent onthe crack growth rate, this meanstha _
the dimensions of the craze microstructure also depenc & | 5

on the crack velocity. Kramer [1] has shown that =
10
ar
ogd = — = A (15) 0.5
Bo
00— - - =
wherer is the energy to create new surface at craze tip 0% 10" 10 100 10 10’ 10°

or craze-bulk interface including an energy of primary

chain rupture 8 is the coefficient of proportionality ~ 1.0x10*

between average hydrostatic stress and tensile stres:

oq, atthe craze-bulk interface. Equation 15 impliesthat 0.8

the fibril spacing and drawing stress are interdependen

and throughout this paper, we will assume the product

of o4d = Ag to be a constant. E
Equations 14 and 15 allow us to solve for the critical =

craze thickness at the crack tip, as a function of the ~ © 04

crack velocitya and material constants, i.e.,

& 06
=

0.2

—1 Ao
hc = T (163-) 0.0 ] ] | | |

2
—_ Gd 2 2
2“(’““'”[1 (Eeﬁfb)] 10* 10" 10° w0 10 10 10
aa

Wher_eUd i$ given by Equ_ation 11. The critical C':aCk tip Figure 5 (a) The dependence bf ona/« using Equation 16a. (b) The
opening displacemerdy, is related td; by Equation 1.  dependence o& ona/« using Equation 16c.
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experimental results, which show that the fractureof chains in one fibril isN, the rate of breakdown is
toughnessincreases as velocity increases [10]. This di$13, 21, 22]

crepancy is due to the rate independent fracture crite-

rion we have used (Equation 13a). Equation 9a implies . AkgT [exp( G*+ AGP — okA/(ZN))

that the drawing stress; increases a& increases (see —N=N ke T
Fig. 4). If the fibril failure stresss is independent od,

then the thickness of the craze has to decrease with in- B exp(— G* — AG® + UKA/(zN))]
creasing for otherwise the stress in the crack tip fibril ks T

will exceedo; according to Equation 14. The experi- (ke T «

mental observations can therefore only be reconciled = NZEB <— >Zsinh

by assuming thad; increases witia. Two physically h ke T

reasonable models for this dependence are described in oAA/(2N) — AGP

Section 4 below. X ( T ) 17)

wherea is the bond displacement between the bonded
and broken state as shown in Fig fis the cross sec-
4. Rate dependent failure models tional area of the fibrilkg is the Boltzmann constarit,
In this section, we re-examine the dependence of thés the Planck’s constant aridis the absolute tempera-
energy release rat6 and the craze thickness at the ture.
crack tip,hc, on the crack propagating velocilybased ~ Steady state crack propagation (Equation 4) implies
ontwo rate dependent failure criteria: chain scission anghatN = —aN., so that Equation 17 becomes
chain disentanglement.
o =

2AGON  2NkgT h .
sinht(aN,y ———e®/kT
A oA ( “2NaksT

4.1. Chain scission

A polymer chain can exist in a bonded state or in a
broken state. If the polymer is stable, the energy levels , o ,
of these two states must be different as shown in Fig. 6=duation 12a implies that the stress decreases rapidly
The initial energy difference between the bonded and® 1tS nominal valueoq at very small distance from
broken states is2G. In order for a polymer chainto 1€ crack tip. This allows us to use the simplify-
break, it must pass over an energy bar@r+ AG°, N9 assumption that all the chain scission happens at
and for bond reformation, an energy bar@r— AG°,  the first fibril ahead of the crack tip, i.eN = XA,
When a normal stress;, is applied in the direction N’X_|X=d = N/d, so the stress needed to fail the first
of bond breakdown, it causes a reduction of the frediPril ahead of the crack tips can be computed from
energy barrier to break the chain. Analogously, theré=duation 18a, i.e.,

is an increase in the barrier height for the healing of a

0
broken bond as shown in Fig. 6. Assuming the number 5 — 2AG Zei
A
2kBTEeff . _1f - h G* /k
—b —= h _ aG"/keT
T M ¥ eTd®
=01+ 02 sinh‘l(a/,B) (18b)
¥ where
2AG" T
2 oy = == el (19a)
M A
: KT
3 0= == (19b)
2 A
£ 22k T .
S L S B =Po/oa and fo= BTA"e—G [t
L2AG Y AN (19c¢)
In Equation 18bg is the rate independent failure stress
for polymer chain and sinh%(a/g) is the contribu-
0 2 Y > tion due to the rate dependent drawing and failure. For
REACTION COORDINATE PMMA, AGCis estimated to be.3 x 10-2° J[22] and

_ _ Yeff to be 0.285 strands/ri{7, 23]. The separation
Figure 6 The free energy diagram for the bonded and broken state. The,. tancex is on the order of ]A for C—C bond. U
solid line represent the stress free state where there is an initial energgIS IS re— - US-

difference 2GO for the two states. The dashed line represent the freelNd these values, it is found thaj ~ 200 MPa and
energy curve after a normal stress is applied. o, ~ 25 MPa forT =300 K. As a check, the forcé,
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needed to break one polymer chain in the low velocity 60 , 1 |
limit can be found using Equation 18b (with ~ o1)
to be 07 x 10~° N, which is consistent with previous
estimates [12, 24].

The half thickness of the craze at the crackHip
can be obtained using Equation 14 wittreplaced by 40 [ .
Equation 18b. This results in

analytical simulation for PMMA
50 -

-1 Ag
g 2
20500d|n|:1_ (m) ]

The relationship between the stress intensity factoran 1o
a can be computed using Equation 7b as

he = (20a)

K, (N/mm*?)
8

o)
<

0 l [ 1 |
K2 = —(1-v)7EA (20b) 10 107 10° 107 10° 10°
> .
2 o ea a (m/s)
L-v )“0'”[1 <al+azsirfh*1(a/ﬁ) } @
. . . N 80 I | i
Note thatAg in Equations 20 is a material constant
given by Equation 15 and thaly is a function ofa analytical simulation for PMMA %7
i (o] i | data PMMA
e e b 8

Fig. 7a shows the dependencdf ona as predicted 60
by Equation 20a using =10 N/(m s). This choice
of Bp is used to fit the experimental data 0bID[9]. &
There are two branches in tife, versusa curve. The g
upper branch corresponds to the higher crack velocit = 40
whereas the lower branch gives a lower crack velocity
for the sameK 5. The lower branch is unstable in the ™
sense that, for a fixell > Kz, a slight increase in the
crack velocity will cause the stress on the first fibril
to increase beyond its critical value, thus causing fur-
ther acceleration of the crack until the higher velocity
is reached on the stable branch. In a load controlled e»

periment, the upper branch of thg, versusa curve is 10° 10* 10 10° 10°
observed. Note that there exists a critical stress inter a (m/s)

sity factor K (atac) below which there is no steady (b)

state solution. This also agrees qualitatively with the

experimental results [11]. Figure 7 (a) Plot of applied stress intensity factdp versus the crack

Although there are experimental data on a Crazé)ropagati(_)n veIociFy'a (Equation 20b) for PMMA. (b) The _solid_lin_e is

. .- the analytical solutions based on the rate dependent chain scission craze
formed ahead of a crack growing at a constant Velocnyailure criterion while the open circle is the experimental data frasii.D~
in a homopolymer, very little is known about the fail-
ure mechanism of the craze at the fibril level. Assuming
that chain scission is the dominant failure mechanism
in Doll's experiments, we compare the analytical pre-bulk interface will cause other changes besides just de-
diction (Equation 20b) with DI's experimental data creasing the drawing stress. For example, it increases
which is shown in Fig. 7b as open circles. The unstathe likelihood of disentanglement during the fibrilla-
ble part of theKa versusa curve (in Fig. 7a) is not tion process, so that, the ratio of the entangled strand
shown. Although reasonable agreement between ou#ensity before crazing to that after crazing, increases
theory and @II's data is found fora < 1 m/s, the the-  at sufficiently high velocities. Since the force needed
oretical curve has a different curvature than the experto break a fibril is proportional tg, an increase irmj
imental data especially at high velocity. This may beWill lead to further increase ifa. This effect is not
because adiabatic heating at the craze bulk interface #tcluded in out model (Equation 20b) which assumes
these crack velocities lowets; below the value pre- d to be a constant.
dicted by Equation 11. This hypothesis is supported
by the actual data of @ll'for oy shown in Fig. 4. To
test this hypothesis, we refitdll’s data fora>1 m/s  4.2. Chain disentanglement
using Equation 20b, assuming that has a constant Kramer and Berger [18] have proposed a disentangle-
value of 100 MPa. The analytical fit is shown as starsment model for a chain in the highly stretched region
in Fig. 7b. The resulting fit is improved somewhat but of the craze fibril near the craze-bulk interface. Here,
it is clear that our analytical results still underestimatewe modify Kramer and Berger’s analysis to consider
Ka at larger velocities. Note that heating at the crazedisentanglement in the fibrils ahead of the crack tip so
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that we can study the process of craze fibril breakdowr\ccording to Equation 22a, the amount of disentangle-

by disentanglement. ment atx is
Consider a molecule in a drawn fibril consisting of a
number of extended molecular lengths between entan- o(x)\P . 08(X)
: =—-a—— (22c)
glements. The length of these is taken to be the contour Oe X

length between entanglemégat=1o(Me/ Mo), wherelg

is the projected length of the mer along the chain and-or the disentanglement failure mechanism, the craze
Me andMp are the entanglement molecular weight andwill fail when the network strands in the first fibril ahead
the mer molecular weight, respectively. The monomeiof the crack tip x =d) are totally disentangled, i.e.,
frictional force in a direction away from the center of §(d) =8, wheredy is the critical value for a fibril to
the chain,fy, is assumed to be a nonlinear function of disentangle fully and is found to be [1, 18]

the velocity of a monomer along the chain relative to

its surrounding®, i.e., So = le(1+ M/ /2Me)

(fm)P = vm<o for vm > 0 At the craze tipx = L, the craze fibrils are assumed to
(1)  pe fully entangled, that & L) = 0. Using Equation 22¢

(—fm)P = —vméo forvm <0 ands(L) =0, we have

wheregg is the monomer friction coefficient arul> 0 X 58 X 1/0(s)\"
is a material constant. In Kramer and Berger’s original §(x) = / 8_ds: / - T( ) ds O<x<lL
L 0S L

work, a linear relation is assumed betwegnandv,, a\ oe
ie,p=1. (23)
Following Kramer and Berger’s analysis, the normalintegrating Equation 23 and enforcing the failure crite-
stressy on a fibril is found to satisfy rion §(d) = 8o, we obtain
P o fod\ P
(i) =35 (22a) L= 6oa<—> (24)
Oe Oe

wheres is the rate of disentanglement ahiis the con-  Whereag andge are given by Equations 11 and 22b,
tour length between entanglemenisis a material con- respectively. The derivation of Equation 24 is given in

stantand its expression in terms of molecular parametefPPendix D. , , ,
is Substituting Equation 24 into Equation 10b, the fol-

lowing explicit expressions fdr; andK 4 are obtained,

Me 1 2p
oe = ——>(50) P —— 4(1—v?)s
. he = (1( - vf)yi g7 oda (%)
4Me p M/ (2p+1)/p _
1-(1 22608 -

X[ M/ 2p + 1[ ( + 4Me> Ka = ﬁo oy P62 (25b)
7\ (P+1)/p . . . S

+ (1+ 4Mn) ] (22p) Whereog is a function of velocity and is given by
e Equation 11.

Using Equations 7a and 25a, the energy release rate
where d is the fibril spacing. The derivation of s related tca by,

Equations 22a and 22b is given in Appendix\g;, in

Equation 22b is the number average molecular weight G = A(@)+i-p/in-D (26)

of the polymer fibrils M, differs from M, the number

average molecular weight of the bulk polymer, sincewhere

chains are broken during fibril formation by surface

drawing. Its relation toVl,, is [1] A 8(1—v3)do (4(1— uz)ao>(2_ p)/(n_l)a(z— PP
YT 2E \E@—w) o e

1 1 1-q

M, My Me Recent experiments of strengthening a polymer/poly-
mer bi-material interface using a deuterated poly-
whereq is the ratio of the entangled strand density styrene-polyvinylpyridine (dPS-PVP) diblock co-
before crazing to that after the crazing. polymer with a moderately long dPS block (540 units),
The amount of disentanglement in the fibril at a dis-showed that the dominant craze failure mechanism is
tancex ahead of the crack tip is obtained by integratingdisentanglement [11]. The results obtained above can
Equation 22a subjected to the steady state conditiofe used to estimate the craze failure at such inter-

(Equation 4), i.e., faces, e.g., a PS/PVP interface reinforced using dPS-
PVP block copolymers. Experiments have shown that

5 — _a@ a craze can only form at the PS side of the PS/PVP

X interface [26]. Assuming the displacement of the PVP
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120 | i pend on the failure mechanism of the fibrils ahead of
the crack tip.

100 L~ Te426 / We have demonstrated that a rate independent craze
/ failure criterion cannot explain the experimental obser-
80 / vations of craze fracture even if rate dependent drawing
e / of the craze fibrils is taken into consideration. Rate de-
g 0 // i pendent craze failure criteria have to be used to obtain
-’ relations betweei 5 and the crack growth ragthat
o P are consistent with experimental results. The depen-
40 - ,§/ 7] dence of the drawing stresg and the craze thickness
7 at the crack tiph; ona has been explicitly derived, us-
20 e - ing rate dependent chain scission and disentanglement
-~ | | | models.
0 |

107 10° 10° 10" 107 107
a (m/s) Appendix A: Characteristics of the
spring network
Figure 8 Plot of energy release ra@versus the crack propagationrate The spring network used in the calculation is formed by
a. The solid line are the plot of the analytical solution using the rate {rgnslation of a unit cell as shown in Fig. 3. The springs
dependent chain disentanglement craze failure criterion (Equation ZGMhiCh model the main fibrils have spring constapt
The filled circles are the experimental measurement for a PS/PVP in- h h ie fibrils h .p g h
terface [10] reinforced by 540-510 dPS-PVP diblock copolymer at aW_ ereas the cross-tie fibri S ave SP””Q consgtarithe
grafting density ofS =0.14 chains/nr. The error bar on the experi- distance between the main fibrils is denoteddbgnd
mental results represents the standard deviation. the angle between the cross-tie fibrils and main fibrils
is denoted by. The cross-section areas (and lengths)

) o ) of the main fibrils and the cross-tie fibrils are denoted
surface is negligible compared with the stretch of theyy A and A; (I andl.) respectively.

craze microstructure, the craze formed at the bima- " Eqr the stress-strain relation shown below:
terial interface is similar to the half craze we have

studied in this paper. This is because in our simula- o011 = Crie11 + Croe22

tion, we only cons@er the upper half plang > 0) 099 = C1611 + Caeas (A1)
due to symmetry. Since the craze cannot form on the

PVP side, theG for the bimaterial interface is equal 012 = 2Cg6612

to G/2 in this paper. Therefore we can use the same

analytical expressions, e.g., Equation 26 for disentanwhere the constants;; are defined by:

glement, to study craze breakdown at a bi-material in-
terface, e.g., PS/PVP. Fig. 8 plots the interface frac-
ture toughnes& versusa for a PS/PVP interface re-
inforced with a dPS-PVP diblock polymer [10]. The
solid line represents Equation 26 of the disentangleme
model (Section 4.2), where we have choggn= 300
and p=29, and we have assumed that= 10 for PS.
Reasonable agreement is found between the simulation Em = vmEm = vmKm! /Am

(Equation 26) and the experimental results. (A3)

Ec = vcEe = Uckclc/Ac

Ci11 = Ecsinf0  Cyp = Ecsirf 0 coso
(A2)
Copo=En+ E¢ coso Cgs =C12

rEm (E¢) is the effective modulus of the main (cross-tie)
fibrils and is defined by:

5. Conclusion wherel andl. denote the length of main and cross-
We have extended the strip model of Brown to pre-tie fibrils respectively. In Equation AE, = Kml /Am
dict the rate dependent stresses inside the craze. Fgy the extension modulus of a typical main fibril and
the power law drawing model used in this study, theE, =k.l./A; is the extension modulus of a typical
strip model provides an approximate analytical solu-cross-tie fibril. Letv,, andV, denote the volumes occu-
tion for the crack tip stresses as demonstrated by oysied by the main and cross-tie fibrils in a unit cell, then
numerical simulation. We anticipate that this can be X, = Vin/ Veell, ve = Ve/ Veen are the volume fractions
tended to include different drawing laws, thus avoidingof the main fibrils and the cross-tie fibrils respectively.
the difficult problem of finding numerical solution to
the coupled rate dependent boundary value problem.

In the rate independent limit, the fracture of the poly- Appendix B: Justification of the approximate
mer glass can be characterized by either a critical energgnalytical solution using full-field numerical
release rat&. or a critical stress intensity factdt.. simulation
This is no longer possible when the material behaviofTfo check the validity and accuracy of the analytical
is rate dependent. In general, the crack growth rate isolution presented above, a full field numerical sim-
controlled by the entire stress history ahead of the cracklation is conducted. As in Ref. [8, 27], we decom-
tip. For the special case of steady state, we have foungose the problem into two parts. Part | is the solu-
relations betweea andKa (G). The exact relations de- tion of the exterior elastic problem (bulk polymer) with
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unknowntraction —on(X) acting on the surface of a 1.5 —— — T

semi-infinite crack loaded under small scale yielding i iy

conditions [14-16]. Problem Il is the solution of the I é©@ 1

interior problem (craze) witlan(x) acting on the un- éé

known craze surface defined hyx). Lok ) i
For the interior problem, the craze microstructure is o = A é

| é .

05 —

modeled using a 2D discrete spring network model as
described in Appendix A. For the plane strain analysis,
the fibrils are treated as sheets with stiffness equiva-
lent to layers of fibrils spaced at distande Out-of-
plane cross-tie fibrils are neglected. This approxima- | 5 humerical simulation results _
! . R . analytical approximation (eq 11)

tion has been examined using a 3D network of springs - .
and has been found to adequately represent the 3D sit- i §
uation [27]. The numerical values for the 2D spring 0.00 7 4 6 8
network, and a detailed discussion of how its parame- ln(é/oc)

ters were obtained, are given in reference [7, 8].

Details of the numerical implementation of the outerFigure 10 The plotog/og versus Ing/c). The numerical simulation
and inner problem based on the rate dependent drawesults are plotted as triangles. The approximate analytical solutions of
ing law (Equation 3) and the rate independent fail-Equation 11 are plotted as open circles.
ure criterion (Equation 13a) can be found in refer-
ence [7, 27]. The numerical simulation are based on pa-

rameters for pol_yst_yrene (PS). The normaliz_ed normal Theoy/oq dependence on laf«) given by our nu-
stressn(x)/op distribution on the craze-bulk interface merical simulations is shown as triangles in Fig. 10,
for different normalized non-dimensional craze Ve|00-wheread, based on our numerical simulation results,
|t|eS (a./O() is shown in F|g 9. The aX-eS is normalized is calculated by tak|ng the averagesaa(x) far away
with respect to the craze length Fig. 9 shows that from the crack tip and away from the craze tip, i.e.,
the faster the crack propagates, the higher is the normal 1| < x < 0.9L. The corresponding analytical expres-
traction on the craze-bulk interface. Note that for thesion (Equation 11) is p|otted as open circlesin F|g 10.
highest crack velocitya/a = 400 in our simulation, the - Good agreement is obtained between the numerical
normal stress an_ng the craze-bulk |_nterface exhibits &jmulation results and the analytical approximation
stress concentration near the crack tip. For slower craciEquation 11).
VE|OCitieS, Iea/()l =3, the stress on the craze-bulk in- F|g 11a shows the dependence of the normalized
terface is low and is practically uniformly distributed craze thickness at the crack tig/d on In@/«). The
along the craze-bulkiinterface. Fig. 9 also shows that thgimulation results are plotted as triangles. The analyti-
Dugdale model is a good approximation for the stresga| expression of Equation 16a, withgiven by Equa-
distribution along the craze-bulk interface. Note thattion 11, is plotted as open circles in Fig. 11a. Good
the results near the craze tip£ L) are not shown in  ggreement is obtained between the numerical results
Fig. 9. This is because in the numerical solution of theand the analytical expressions (Equation 16a). Fig. 11b
non-linear integral equation of Equation 6a, substantiakhows a plot oK a /(0o+/d) versus Ing/a). The numer-
erroris introduced near= L [28, 29]. However, itwas  ical simulation results are shown as triangles in Fig. 11b
shown in Ref. [28] that the error is localized>at=L  whereas the analytical expression of Equation 16b is
and thus does not affect the stress near thecrack tip. pjotted as open circles. Good agreement is obtained for
thick crazes (lowa/« corresponds to a thick craze).

ag4/0

L5 1 1 1 1 I
-
e T T T Appendix C: Derivation of Equation 22
b~ . B Following Kramer and Berger [18},, can be approx-
[ - imated by
10+ S S
bo e — - —— ] M/ 1 1
~ (T =Av[l—- " (x -2 X < =
) — - =400 " v[ ZMe( 2 "2
b: it a= (Cl)
-—a/a=200 M/ 1 1
05 . — _ n / /
— - aa=75 vm—Av[—l—ZM (X _5)] X >§
- —2a=20 ©
— —a/a=10 . ) )
— da=3 whereAv =34 is the rate of disentanglement.is the
00 J: | | | | fractional distance along the molecule from one of its
‘ 0.0 0.2 0.4 0.6 0.8 ends. The force in the chain is given by
x/L
/
Figure 9 The normalized normal stress(x)/oo distribution on the f(X/) — f % fm(TI) d,7 (CZ)
craze-bulk interface for different crack growth rates. Mo
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Figure 11 (a) The plotoh¢/d versus In&/«). The numerical simulation

results are plotted as triangles. The approximate analytical solutions of

Equation 16a are plotted as open circles. (b) The pldgf(co./d)

versus In&/«). The numerical simulation results are plotted as triangles.

The average force in the chajf) is given by

/f(x)dx_ ({A)l/pp+l

AM 7\ 2p+1)/p
| e PNy (1+ M
M/ 2p+1 4Me
M/ (p+1)/p
1 C4
+( * 4Me> ] 4
The normal stress in the fibril is given by= ( f )/d?

and the rate of disentanglemensis: Av. Thus Equa-
tion C4 can be written as

p -
(i) = (C5)
Oe
and
2p
1/p
Ue M dz(é‘) p+1
7\ (2p+1)/p
|l (ra) ]
M/, 2p+1 4Me
M/ (p+1)/p
1
+( +4M> }

The approximate analytical solutions of Equation 16b are plotted as opegyhich is Equation 22b.

circles.

Appendix D: Derivation of Equation 24

with the boundary conditions that the forces are zero alntegrating Equation 23 frorh tod using the boundary

the ends, i.e.f (0)=0, f(1)=0. Putting Equations 21
and C1 into Equation C2 and for simplicity, only con-
sideringp to be an odd number, we have

2Me
1) = o otn) P P
p+1
My qu (p+1)/p
Me 4Me
( )P+D/P:| ) 1
X < —=
2
F(X) = 2M< wyPP_
p+1
/ 7\ (P+1)/p
x| (—1— My X' —+ My
2Me 4Me
Mr/1 (p+1)/p ) 1
—<1+4Me> ] x> (C3)

where Mg is the molecular weight of mer repeat unit
and Mg is the entanglement molecular weight.
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conditionss(L) =0 ands(d) = 8o,

[
d Oe
Substitutingo (X) in Equation 12a into Equation D1,
we obtain

p
) dx = sca (D1)

dx

/dL (Z_:)p(l exp(— %)) P2

With the change of variabte= /1 — exp(~m X/hcoo),

Equation D2 becomes
-p
(@> a (D3)
Oe

d2
|( — /
d]

where

—sa  (D2)

ot B
tP-1(1-t2)

Sc
2hca0

dy = /1— exp(-md/heao),

dr=/1— exp(=mL/ho).



lo can be integrated exactly for any positive integer
For an integemp, lgis
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